Lesson Plan Name of College: Government College for Women, Shahzadpur (Ambala) Academic Session: April-July (2021-22) Class: B.Sc. 2nd Semester Non-Med (4-6) Days Paper: Properties of Matter and Kinetic Theory of Gases (PH-201) Teacher's Name: Dr. Raj Kumari | Month | Dates | Topic to be covered | Academic/
Activity to be
organized | Assignments/
Tests | |-------|--------------|--|--|-----------------------| | April | 09 | Introduction | | | | | 14-16 | Unit 1: Moment of inertia Rotation of rigid body, Moment of inertial, Torque, angular momentum, Kinetic Energy of rotation. | | | | | 21-23 | Theorem of perpendicular and parallel axes (with proof), Moment of inertia of solid sphere, Moment of inertia of hollow sphere | | | | | 28-30 | MOI of Spherical shell, solid cylinder, Hollow cylinder and solid bar of rectangular cross—section | | Assignment I | | May | 5-7 | Fly wheel, Moment of inertia of an irregular body, Acceleration of a body rolling down on an inclined plane | | | | | 12-14 | Unit 2: Elasticity Elasticity, Stress and Strain, Hook's law Elastic constant and their relations | Declamation
Contest | | | | 19-21 | Poisson's ratio, Torsion of cylinder and twisting couple, Torsion of cylinder and twisting couple contd | | - | | | 26-28 | Determination of coefficient of modulus of rigidity for the material of wire by Maxwell's needle, bending of beam (Bending moment and its magnitude), <i>Numerical Problems</i> | 901 | Assignment II | | June | 2-4 | Cantilever and centrally loaded beam, Determination of Young's modulus for the material of the beam, Elastic constants for the material of the wire by Searle's method; Discussion and Queries | | Test I | | | 9-11 | Unit 3: Kinetic theory of gases-I Assumption of Kinetic theory of gases, Pressure of an ideal gas (with derivation), | | | | | 16-18 | Kinetic interpretation of Temperature, Ideal Gas equation, Degree of freedom, Law of equipartition of energy, Law of equipartition of energy, application for specific heat of gases, | | | | | 23-25,
30 | Real gases, Vander wall's equation, Brownian motion (Qualitative), | | Test II | | July | 1-2 | Unit 4: Kinetic theory of gases-II Introduction, Maxwell's distribution of speed and velocities | Seminar by students | | |------|-------|---|---------------------|---| | | 7-9 | Experimental verification of Maxwell's law of speed distribution: most probable speed | | An Market Berger Jan Hart Stevenschaft und Kantalonger Schaffe Stevenschaft und der Stevenschaft und der Anton | | | 14-16 | Average and r.m.s. speed; <i>Numerical Problems</i> , Mean free path | | memoria, marina di producción de la companya de la comenta activação de comenta de la comenta de la comenta de
En la comenta de coment | | | 21-23 | Transport of energy and momentum, Diffusion of gases | | umma dan sa mengenakan kenangan dan dan dan dan dan pendahan sa dan pendahan dan pendahan dan pendahan sa pend
Sa dan pendahan sa dan pendahan | | | 28-30 | Oueries and Discussion | | Revision Test | Teacher's Sign HOD Dr. Roj Kuman) ## **Lesson Plan** Name of College: Government College for Women, Shahzadpur (Ambala) Academic Session: April-July (2021-22) Class: B.Sc. 2nd Semester Non-Med (1-3) Days Paper: Semi-Conductor Devices (PH-202) Teacher's Name: Dr. Raj Kumari | Month | Dates | Topic to be covered | Academic/
Activity to be
organized | Assignments/
Tests | |-------|-----------|--|--|--| | April | | Unit I: Semiconductors Energy bands in solids,
Intrinsic and extrinsic semiconductors | | | | | 11-13 | carrier mobility and electrical resistivity of | | | | | 10.20 | Carrier mobility and electrical resistivity of | | | | | 18-20 | Semi- Conductor, Hall effect p-n junction diode and their characteristics | | Assignment I | | | 25.27 | Zener and Avalanche breakdown, Zener diode, | | | | | 25-27 | Zener diode as a voltage regulator | | | | 77 | _ | p-n junction as a rectifier, half wave and full | | | | May | 2-4 | wave rectifiers (with derivation) | | | | | 2-4 | filters (series inductor, shunt capacitance, L- | | | | | | section or choke, π and R.C. filter circuits | | | | | | Doubts/Querries | | | | | 9-11 | Unit: II Transistors: Junction transistors | Declamation | | | | 9-11 | Working of NPN and PNP transistors | Contest | | | | | Three configurations of transistor (C-B, C-E, C- | | | | | 16-18 | C modes) Common base, common emitter | | | | | 10-10 | characteristics of transistor, common collector | | | | | | characteristics of transistor | | | | | 23-25 | Constants of a transistor and their relation | | Assignment | | | 23-23 | Advantages and disadvantages of C-E | | II | | | | configuration. | | | | | 30-31 | D.C. load line and numerical problems | | 759 | | | 30-31 | | | | | T | 1, 6-8 | Transistor biasing, various methods of transistor | | Test I | | June | 1, 0-8 | biasing and stabilization | | | | | | Doubts/Queries | | | | | 13-15 | Unit III: Transistor Amplifiers: Amplifiers, | | | | | 13-13 | Classification of amplifiers | | | | | 20-22 | common base and common emitter amplifiers | | | | | 20-22 | coupling of amplifiers | | | | | 27.20 | various methods of coupling | | Test II | | | 27-29 | Resistance- Capacitance (RC) coupled amplifie | . | | | | | (two stage, concept of band width, no derivation) | | | | 1000 | < | (two stage, concept of band width, no derivation) | ′ | | | | | Doubts/Querries | Seminar by | | | July | 1, 4-6 | Unit IV: Oscillators: Principle of | students | | | | er to 📆 i | oscillation, classification of oscillators, | students | | | | | classification of oscillators,cont | | and the same of th | | 11-13 | Condition for self sustained oscillation: Barkhausen criterion for oscillation, | | |-------|--|------------------| | 18-20 | Tuned collector common emitter oscillator, Hartley oscillator, C.R.O. (Principle and Working). | | | 25-27 | Doubts/Querries | Revision
Test | Teacher's Sign HOD (Dr. Raj Kuman) ## Lesson plan Name of College: Govt. College for Women, Shahzadpur (Ambala) Academic Session: April July (2021-22) Class: B.Sc Ist Year Paper: Vector Calculus, BM-123 Teacher's Name: Natasha | Week | Dates | Topic to be covered | Academic/Activity to be organized | Assignments/Test | |-----------|---------------------------|---|-----------------------------------|------------------| | | 20.01.2022 | Scalar and vector product of three vectors, product of four | | | | Week 1 | 08.04.2022-
14.04.2022 | The second viactors | | | | | 14.04.2022 | Vectors. Reciprocal vectors. Vector differentiation Scalar Valued point functions, | | | | | | Vector direction | | | | | | | | | | | | | | | | Week 2 | 15.04.2022- | vector valued point functions, | | | | | 21.04.2022 | derivative along a curve, directional derivatives | | | | | | | | Test | | 11.1.2 | 22.04.2022- | Gradient of a scalar point function, geometrical | | 103. | | Week 3 | 28.04.2022 | interpretation of grad F , character of | | | | | 20.04.2022 | gradient as a point function. | | | | | | | 2 | | | Week 4 | 29.04.2022- | Divergence and curl of vector point function, characters of | | | | W CCK 4 | 05.05.2022 | Div f and Curl f as point function, examples | | Assignment | | Week 5 | 06.05.2022- | G 11 4 15 and curl of sums | | | | TICKS | 12.05.2022 | and product and their related vector identities. Laplacian | | | | | | onerator | | | | Week 6 | 13.05.2022- | Orthogonal curvilinear coordinates Conditions for | | | | TT CCIA C | 19.05.2022 | orthogonality fundamental triad of | | | | | | mutually orthogonal unit vectors | | Test | | Week 7 | 20.05.2022- | Gradient, Divergence, Curl and Laplacian operators in | | | | | 26.05.2022 | terms of orthogonal curvilinear coordinates, | | | | Week 8 | 27.05.2022- | Cylindrical co-ordinates | | | | | 02.06.2022 | | Seminar | Test | | Week 9 | 03.06.2022- | Spherical coordinates | <u>()</u> | | | | 09.06.2022 | 71 14 | | | | Week10 | 10.06.2022- | Vector integration; Line integral, | | | | | 16.06.2022 | | | | | Week11 | 17.06.2022- | Surface integral | | | | | 23.06.2022 | | | Test | | Week12 | 24.06.2022- | Volume integral | 1 | | | W CCKIZ | 30.06.2022 | | | | | Week13 | 31.06.2022- | Theorems of Gauss, Green | | | | HECKIS | 06.07.2022 | | | | | Week14 | 07.07.2022- | Stokes and problems based on these theorems | | | | | 13.07.2022 | | | | | Week15 | 14.07.2022- | Revision | | | | HELRIS | 18.07.2022 | | | | Vature Teacher's Sign (NATASHA) ## Lesson plan Name of College: Govt. College for Women, Shahzadpur (Ambala) Academic Session: April –July (2021-22) Class: B.Sc 1st Year Paper: Ordinary Differential Equations BM-122 Teacher's Name: Natasha | Week | Dates | Topic to be covered | Academic/Activity to be
organized | Assignments/Test | |---------|---------------------------|--|--------------------------------------|------------------| | Week I | 08.04.2022-
14.04.2022 | Geometrical meaning of a differential equation. Exact differential equations, integrating factors. | | | | Week 2 | 15.04.2022-
21.04.2022 | First order higher degree equations solvable for x,y,p Lagrange's equations, Clairaut's equations | | Test | | Week 3 | 22.04.2022-
28.04.2022 | Equation reducible to Clairaut's form. Singular solutions | | | | Week 4 | 29.04.2022-
05.05.2022 | Orthogonal trajectories: in Cartesian coordinates and polar coordinates. Self orthogonal family of curves | | Test | | Week 5 | 06.05.2022-
12.05.2022 | Linear differential equations with constant coefficients. | | | | Week 6 | 13.05.2022-
19.05.2022 | Homogeneous linear ordinary differential equations, Equations reducible to homogeneous | | | | Week 7 | 20.05.2022-
26.05.2022 | Linear differential equations of second order:
Reduction to normal form. | | Test | | Week 8 | 27.05.2022-
02.06.2022 | Transformation of the equation by changing the dependent variable/ the independent variable | | | | Week 9 | 03.06.2022-
09.06.2022 | Solution by operators of non-homogeneous linear differential equations Reduction of order of a differential equation. | | Assignment | | Week10 | 10.06.2022-
16.06.2022 | Method of variations of parameters. Method of undetermined coefficients. | | | | Weekl l | 17.06.2022-
23.06.2022 | Ordinary simultaneous differential equations. Solution of simultaneous differential equations involving operators x (d/dx) or t (d/dt) etc. | Seminar | Test | | Week12 | 24.06.2022-
30.06.2022 | Simultaneous equation of the form $dx/P = dy/Q = dz/R$. Total differential equations. | | | | Veek13 | 31.06.2022-
06.07.2022 | Condition for Pdx + Qdy +Rdz = 0 to be exact. General method of solving Pdx + Qdy + Rdz = 0 by taking one variable constant. Method of auxiliary equations. | | | | Veekl4 | 07.07.2022-
13.07.2022 | Condition for Pdx + Qdy +Rdz = 0 to be exact. General method of solving Pdx + Qdy + Rdz = 0 by taking one variable constant. Method of auxiliary equations. | | Test | | Veek15 | 14.07.2022-
18.07.2022 | Revision | | |