	Govt. College for Women, Shahzadpur (Ambala)		
	Lesson Plan(2023-2	<u>4 Even)</u>	
Name of the Teacher:-S	onia Devi	Paper Code:PH- 402, PH-401	
Paper Name-Wave and	d Optics II & Statistical Physics	Session: 2023-24	
Class :B.SC II		Internal Marks:10(Each paper)	
Subject:PHYSICS		External Marks: 40(Each paper)	
Course Objectives	after the interference and did of a wave and working conce Statstical physics will tell abo number of intercating particl based on distinguishable and	at inducing the knowledge about polarisation of wave nature of light ne interference and diffraction nature of light wave, fourier analysis we and working concepts of a optical fibre used in communication. It is also the arrangement or behaviour of large or of intercating particle and their energy and three type of statistics on distinguishable and non-distinguishable particles and the tion of specific heat on the basis of these types.	
Course Outcome	application . Fourier transforthe solution of ordinary diffe students about advantages of	rarious form of polarisation and its mation will help to the students for finding ential equations .It will make understand the communication through optical fibres over ion. Statistical branch of physics gives a and macroscopic view .	
	Lesson Plan from 01.01.2024 to 30.04.2024		
Month Dates	nth Dates Topics To be Covered Assignment/ Test/ others		

		Unit-1: Polarization	
		Polarization: Polarisation by	
		reflection, refraction and	
		scattering, Malus Law,	
		Phenomenon of double refraction,	
		Huygen's wave theory of double	
		refraction (Normal	
		and oblique incidence), Analysis of	
		polarized Light. Nicol prism,	
		Quarter wave plate and	
		half wave plate, production and	
		detection of (i) Plane polarized	
		light (ii) Circularly	
		polarized light and (iii) Elliptically	
		polarized light. Optical activity,	
		Fresnel's theory of	
		optical rotation, Specific rotation,	
		Polarimeters (half shade and	
January	01-23/01/2024	Biquartz).	

Unit-II: Fourier analysis Fourier theorem and Fourier series, evaluation of Fourier coefficient, importance and limitations of Fourier theorem, even and odd functions, Fourier series of functions f(x) between (i) 0 to 2pi, (ii) –pi to pi, (iii) 0 to pi, (iv) –L to L, complex form of Fourier series, Application of Fourier theorem for analysis of complex waves: solution of triangular and rectangular waves, half and full wave rectifier outputs, Parseval identity for Fourier Series, Fourier integrals.

24-31/01/2024

		_	
		Unit III: Fourier transforms	
		Fourier transforms and its	
		properties, Application of Fourier	
		transform (i) for evaluation	
		of integrals, (ii) for solution of	
		ordinary differential equations,	
		(iii) to the following	
		functions:	
		1. f(x)= e- x2/2	
		1 X <a< th=""><th></th></a<>	
		2 . f(x) =	
		0 X >a	
		Geometrical Optics I	
		Matrix methods in paraxial optics,	
		effects of translation and	
		refraction, derivation of thin	
		lens and thick lens formulae, unit	
February		plane, nodal planes, system of thin	
		lenses.	
	01-13/02/2024		

Unit-IV: Geometrical Optics II
Chromatic, spherical, coma,
astigmatism and distortion
aberrations and their remedies.
Fiber Optics
Optical fiber, Critical angle of
propagation, Mode of
Propagation, Acceptance angle,
Fractional refractive index change,
Numerical aperture, Types of
optics fiber, Normalized
frequency, Pulse dispersion,
Attenuation, Applications, Fiber
optic Communication,
Advantages.

14-29/02/2024

Assignment 1,Test 1

	I	Unit –I: Statistical Physics	Assignment 2 Tool 2
		Microscopic and Macroscopic	Assignment 2,Test 2
		systems, events-mutually	
		exclusive, dependent and	
		independent. Probability,	
		statistical probability, A- priori	
		Probability and relation	
		between them, probability	
		theorems, some probability	
		considerations, combinations	
		possessing maximum probability,	
		combination possessing minimum	
		probability, Tossing	
		of 2,3 and any number of Coins,	
		Permutations and combinations,	
		distributions of N (for	
		N= 2,3,4) distinguishable and	
		indistinguishable particles in two	
		boxes of equal size,	
		Micro and Macro states,	
March		Thermodynamical probability,	
		Constraints and Accessible states,	
		Statistical fluctuations, general	
		distribution of distinguishable	
		particles in compartments	
		of different sizes, Condition of	
	04-14/03/2024	equilibrium between two systems	

Unit -II: Statistical Physics II
Postulates of statistical physics, Phase
space, Division of Phase space into
cells, three kinds of statistics, basic
approach in three statistics. M. B.
statistics applied to an ideal gas in
equilibrium- energy distribution law
(including evaluation of σ and β) ,
speed distribution law & velocity
distribution law. Expression for
average speed, r.m.s. speed, average
velocity, r. m. s. velocity, most
probable energy & mean energy for
Maxwellian distribution.

18-28/03/2024

	1	1
		Unit-III: Quantum Statistics
		Need for Quantum Statistics: Bose-
		Einstein energy distribution law,
		Application of B.E.
		statistics to Planck's radiation law
		B.E. gas, Degeneracy and B.E.
		Condensation, Fermi Dirac energy
		distribution law, F.D. gas and
		Degeneracy, Fermi energy and
		Fermi
		temperature, Fermi Dirac energy
		distribution law, Fermi Dirac gas
		and degeneracy, Fermi
		energy and Fermi temperature,
		Fermi Dirac energy distribution
		law for electron gas in
		metals, Zero point energy, Zero
		point pressure and average speed
April		(at 0 K) of electron gas,
7 .p		Specific heat anomaly of metals
		and its solution. M.B. distribution
		as a limiting case of
		B.E. and F.D. distributions,
	01-11/04/2024	Comparison of three statistics.

	Unit-IV : Theory of Specific Heat of
	Solids
	Dulong and Petit law. Derivation
	of Dulong and Petit law from
	classical physics. Specific
	heat at low temperature, Einstein
	theory of specific heat, Criticism of
	Einstein theory,
	Debye model of specific heat of
	solids, success and shortcomings
	of Debye theory,
	comparison of Einstein and Debye
	theories.
15-30/04/2024	Revision